There are some spherical balloons taped onto a flat wall that represents the XY-plane. The balloons are represented as a 2D integer array points
where points[i] = [xstart, xend]
denotes a balloon whose horizontal diameter stretches between xstart
and xend
. You do not know the exact y-coordinates of the balloons.
Arrows can be shot up directly vertically (in the positive y-direction) from different points along the x-axis. A balloon with xstart
and xend
is burst by an arrow shot at x
if xstart <= x <= xend
. There is no limit to the number of arrows that can be shot. A shot arrow keeps traveling up infinitely, bursting any balloons in its path.
Given the array points
, return the minimum number of arrows that must be shot to burst all balloons.
Example 1:
Input: points = [[10,16],[2,8],[1,6],[7,12]] Output: 2 Explanation: The balloons can be burst by 2 arrows: - Shoot an arrow at x = 6, bursting the balloons [2,8] and [1,6]. - Shoot an arrow at x = 11, bursting the balloons [10,16] and [7,12].
Example 2:
Input: points = [[1,2],[3,4],[5,6],[7,8]] Output: 4 Explanation: One arrow needs to be shot for each balloon for a total of 4 arrows.
Example 3:
Input: points = [[1,2],[2,3],[3,4],[4,5]] Output: 2 Explanation: The balloons can be burst by 2 arrows: - Shoot an arrow at x = 2, bursting the balloons [1,2] and [2,3]. - Shoot an arrow at x = 4, bursting the balloons [3,4] and [4,5].
Constraints:
1 <= points.length <= 105
points[i].length == 2
-231 <= xstart < xend <= 231 - 1
当我看到这道题目的时候,我的第一反应是——DP。记得之前我曾形容过一些题目『长着一张DP的脸』,现在看来可能是我看什么都长着一张DP的脸。
一个常见的说法是:能用贪心解决的问题一般也能用动态规划解决。不过通过这一题我了解到:有时候贪心算法比动态规划好用很多。而且贪心算法也不是完全无迹可寻:如果一个问题有局部最优解,那么很可能就要用到贪心;而动态规划中下一个子问题是从上一个子问题推出的。
在参考答案写出贪心写法后,我又尝试写出了动态规划的写法。可是这实在非常强行:如果我想出了适用与于动态规划的写法,那我很大概率已经想出了贪心的解法了。这更像是一种改写。
贪心:
/** * @param {number[][]} points * @return {number} */ var findMinArrowShots = function(points) { let count = 1 points = points.sort((p, c) => p[1] -c[1]) let max = points[0][1] for (let i=1; i<points.length; i++) { if (points[i][0] > max) { count++ max = points[i][1] } } return count };
动态规划:
/** * @param {number[][]} points * @return {number} */ var findMinArrowShots = function(points) { const dp = [] points = points.sort((p, c) => p[1] -c[1]) let flag = points[0][1] for (let i=0; i < points.length; i++) { if (i === 0) { dp[0] = 1 continue } let [start, end] = points[i] if (start <= flag) { dp[i] = dp[i-1] } else { dp[i] = dp[i-1]+1 flag = end } } return dp.pop() };